Structural insights into the subtype-selective antagonist binding to the M2 muscarinic receptor

<u>Suno Ryoji</u>¹, Sangbae Lee², Shoji Maeda³, Satoshi Yasuda⁴, Keitaro Yamashita⁵, Kunio Hirata^{6,7}, Takeshi Murata^{4,7}, Masahiro Kinoshita⁸, Masaki Yamamoto⁶, Brian Kobilka³, Nagarajan Vaidehi², So Iwata⁹, Takuya Kobayashi¹

¹Dept. Med. Kansai Medical Univ., ²Beckman Research Inst. of the City of Hope, ³Stanford University School of Medicine, ⁴Dept. Science, Chiba Univ., ⁵Dept. Science, Univ. of Tokyo, ⁶RIKEN SPring-8 center, ⁷JST, PRESTO, ⁸IAE, Kyoto Univ., ⁹Grad. Sch. Med., Kyoto Univ.

Human muscarinic receptor, M_2 is one of the five subtypes of muscarinic receptors belonging to the family of G protein-coupled receptors. Muscarinic receptors are targets for multiple neurodegenerative diseases. The challenge has been designing subtype selective ligands against one of the five muscarinic receptors. We report high resolution structures of a thermostabilized mutant M_2 receptor bound to a subtype selective antagonist AF-DX 384 and a non-selective antagonist NMS. The thermostabilizing mutation S110R in M_2 was predicted using a theoretical strategy previously developed in our group. Comparison of the crystal structures and pharmacological properties of the M_2 receptor shows that the Arg in the S110R mutant mimics the stabilizing role of the sodium cation, that is known to allosterically stabilize inactive state(s) of class A GPCRs. Molecular Dynamics simulations reveal that tightening of the ligand-residue contacts in M_2 receptor compared to M_3 receptor leads to subtype selectivity of AF-DX 384.