15-keto-prostaglandin E₂, the metabolite of prostaglandin E₂, may work as biased agonist for EP2 and EP4 receptors.

<u>Suzu Endo</u>¹, Kanaho Senoo¹, Harumi Takano¹, Yumi Araki¹, John W. Regan², Keizyo Fukushima¹, Hiromiti Fujino¹

¹Dept. Pharmacol. Life Sci. Gard. Sch. Pharm. Sci. Tokushima Univ., ²Dept. Pharm/Tox,. Col. Pharm., Univ. of Arizona

Prostaglandin E_2 (PGE₂) are known to be involved in inflammation and cancer. There are four subtypes of E-type prostanoid (EP) receptors, EP1 to EP4, for PGE₂. Among them, EP2 receptor and EP4 receptor are frequently confused because they are both coupled with Gs-protein. Although, we have previously shown that EP4 receptor is additionally coupled with Gi-protein. PGE₂ is metabolized to 15-keto-PGE₂ by the action of 15-hydroxy prostaglandin dehydrogenase. 15-keto-PGE₂ has been considered as an inactive form of PGE₂. However, we thought 15-keto-PGE₂ is a hydroxyl or a carbonyl functional group at position 15. Here we found that 15-keto-PGE₂ acts as a full agonist for EP2 receptor, while acting as a partial agonist for EP4 receptor. In addition, when compared to the affinity and efficacy, it was found that PGE₂ is tend to activate EP4 receptor, but when it is metabolized to 15-keto-PGE₂, it prefers to activate EP2 receptor. Thus, 15-keto-PGE₂ may not be just an inactive form of PGE₂, but may involve in the biological and physiological roles that need to be elucidated.