The role of prostaglandin E₂ in environmental factors of psychiatric disorders

<u>Hirotake Hida</u>^{1,2}, Akihiro Mouri³, Mitsuhira Takasu², Rina Muto², Mizuki Uchida², Tomoyuki Furuyashiki⁴, Shuh Narumiya⁵, Toshitaka Nabeshima³, Kiyofumi Yamada¹, Akira Yoshimi², Norio Ozaki⁶, Yukihiro Noda^{1,2}

¹Hosp Pharm, Nagoya Univ Hosp, ²Div Clin Sci & Neuropsychopharmacol, Grad Sch Pharm, Meijo Univ, ³Regulatory Sci, Grad Sch Health Sci, Fujita Health Univ, ⁴Div Pharmacol, Grad Sch Med, Kobe Univ, ⁵Dept Drug Discovery Med, Grad Sch Med, Kyoto Univ, ⁶Dept Psych, Grad Sch Med, Nagoya Univ

We investigated the possibility of prostaglandin E_2 (PGE₂) as one of common molecules associated with vulnerability to neurodevelopmental disruptions induced by environmental factors. PGE₂ levels in whole brain were significantly increased after exposure to viral infection [injection of polyinosinic-polycytidylic acid (polyI:C)], hypoxia (exposure to CO₂), and neglect (separation from the dams) in postnatal day (PD) 2, compared to those after non-exposure. The mice administered polyI:C during PD 2-6 exhibited the impairment of sociality, object recognition memory, and prepulse inhibition (PPI) in adult at PD 70, and further, significant decreased spine density of the mPFC in adult mice. Exposure to CO₂ at PD 2 and separation from dams during PD 2-21 exhibited the impairment of PPI and decrease of spine density in adult mice. These behavioral impairments induced by administration of polyI:C were recovered by an inhibition of PGE₂-EP1 (PGE₂ receptor subtype) and of cyclooxygenase (COX). Our findings suggest that PGE₂ is one of potential common molecules associated with vulnerability to neurodevelopmental disruptions induced by environmental factors, and PGE₂ plays a crucial role in the development of behavioral and neuronal impairments, which are associated with activation of PGE₂-EP1.