Poster Sessions

Involvement of EPAC and TPL2 in IL-1 β production in microglial cells following activation of β -adrenergic receptors

Hidetoshi Saitoh¹, Izumi Sasaki¹, Tomohiro Yamashita², Makoto Tsuda¹

¹Dept. Life innov, Grad. Sch. Phamaceut., Kyushu Univ., ²Lab. Global Healthcare, Grad. Sch. Phamaceut., Kyushu Univ.

Endogenous noradrenaline (NA) has multiple bioactive functions and, in the central nervous system (CNS), has been implicated in modulating neuroinflammation via β -adrenergic receptors (β -ARs). Microglia, resident macrophages in the CNS, have a central role in the brain immune system and have been reported to be activated by NA. However, intracellular signaling mechanisms of the AR-mediated proinflammatory responses of microglia are not fully understood. Using a rapid and stable *in vitro* reporter assay system to evaluate IL-1 β production in microglial BV2 cells, we found that NA and the β -AR agonist isoproterenol upregulated the IL-1 β reporter activity. This effect was suppressed by β -AR antagonists. We further examined the involvement of EPAC (exchange protein directly activated by cAMP) and TPL2 (tumor progression locus 2, MAP3K8) and found that inhibitors for EPAC and TPL2 reduced AR agonist-induced-IL-1 β reporter activity. These inhibitors also suppressed NA-induced endogenous *II1b* mRNA and IL-1 β protein. Our results suggest that EPAC and TPL2 are involved in β -AR-mediated IL-1 β production in microglial cells, and extend our understanding of its intracellular signaling mechanism.