Tumor necrosis factor alpha protects retinal ganglion cells against excitotoxicity via reduction of oxidative stress in the mice

<u>Kenji Sakamoto</u>^{1,2}, Yuki Haginoya¹, Hiroki Sakai¹, Daiki Asano¹, Akane Morita¹, Asami Mori¹, Tsutomu Nakahara¹

¹Dept. Mol. Pharmacol., Kitasato Univ. Sch. Pharm. Sci., ²Lab. Med. Pharmacol., Fac. Pharma-Sci., Teikyo Univ.

Excitotoxicity is thought to be involved in the neuronal cell death induced by glaucoma. We reported that tumor necrosis factor alpha (TNF α) was involved in the protective effects of a Toll-like receptor 9 agonist on the retinal ganglion cell loss induced by excitotoxicity in the mice. In the present study, we examined whether TNF α protected retinal ganglion cells against the NMDA-induced neurotoxicity via reduction of oxidative stress in the mice, *in vivo*. Male ICR mice of 8-12 weeks old were subjected to intravitreal NMDA (40 nmol/eye). TNF α (1 ng/eye) was intravitreally injected 18 hours before NMDA injection. Eyes were enucleated 24 hours and 7 days after NMDA injection, and the paraffin-embedded sections and the whole mount retinas were prepared, respectively. Immunohistochemistry using anti-8-OHdG antibody and Alexa Fluor 488-conjugated anti-NeuN antibody was carried out. TNF α significantly reduced the number of 8-OHdG-positive cells in the retinal ganglion cell layer 24 hours after NMDA injection, and the retinal ganglion cell loss 7 days after NMDA injection. These results suggest that TNF α protects retinal ganglion cells against excitotoxicity via reduction of oxidative stress in the mice.