3-O-129 Oral Sessions

Analysis of onset mechanism for tyrosine kinase inhibitor imatinib inducedleft ventricular diastolic dysfunction

<u>Koki Chiba</u>¹, Mihoko Hagiwara-Nagasawa², Ryuichi Kambayashi², Ai Goto¹, Tsukasa Hara³, Ryosuke Amagai³, Yoshio Nunoi², Hiroko Izumi-Nakaseko^{1,2}, Ayako Okado-Matsumoto³, Akio Matsumoto⁴, Atsushi Sugiyama^{1,2,4}

¹Dept. Pharmacol., Grad. Sch. Med., Toho Univ., ²Dept. Pharmacol., Faculty Med., Toho Univ., ³Lab. Biochem., Dept. Biol., Faculty Sci., Toho Univ., ⁴Dept. Aging Pharm., Faculty Med., Toho Univ.

Introduction: Imatinib is a tyrosine kinase inhibitor used for treating various types of cancers. The other tyrosine kinase inhibitors sunitinib and dasatinib have been reported to induce diastolic dysfunction; however, such information is lacking for imatinib.

Methods: Exp. 1: Imatinib mesylate in doses of 1 and 10 mg/kg, i.v., were administered to the halothane-anesthetized dogs (n=4). Cardiovascular variables along with biomarkers reflecting myocardial injury were measured. Exp. 2: Mitochondria isolated from the rat heart (n=2) were incubated with tyrosine kinase inhibitors, of which effects on mitochondrial respiratory complexes were assessed.

Results: Exp. 1: The low dose decreased the total peripheral vascular resistance with prolonging the isovolumic relaxation time, prolonged the QTc and J- T_{peak} c, and increased AST and LDH. Moreover, the high dose suppressed the ventricular relaxation, increased the left ventricular end-diastolic volume, prolonged HV interval and increased CPK. Exp. 2: The activity of complex II were decreased by the inhibitors.

Conclusions: Imatinib may induce myocardial injury, resulting in the left ventricular diastolic dysfunction, in which mitochondrial dysfunction might play an important role.