3-0-117 Oral Sessions

$\overline{\beta}$ 2 adrenergic signaling of cardiac fibroblasts induces cardiac hypertrophy through paracrine system

<u>Atsuki Imaeda</u>¹, Shota Tanaka¹, Kotaro Matsumoto¹, Makiko Maeda², Masanori Obana¹, Yasushi Fujio¹

¹Laboratory of Clinical Science and Biomedicine, Grad. Sch. Pharm., Osaka Univ., ²Education and Research Project for Pharm.D, Grad. Sch. Pharm., Osaka Univ.

[Background]

Isoprenaline (ISO), a β adrenergic receptor (β AR) agonist, activates the β 2AR signal of cardiac fibroblasts (CFs) and induces cardiac hypertrophy. The purpose of this study is to elucidate this mechanism.

[Methods & Results]

Since ISO activated PKA, a downstream signal of β 2AR, in CF, we generated mice with fibroblast-specific overexpression of the PKA catalytic subunit (PKA-OE mice) and found that PKA-OE mice exhibited cardiac hypertrophy. CFs were prepared from wild-type or PKA-OE mice, designated as WT-CFs or PKA-OE-CFs, respectively. The stimulation of neonatal rat cardiomyocytes (NRCMs) with the culture medium from PKA-OE-CFs resulted in cardiomyocyte hypertrophy, suggesting that CFs produce hypertrophic paracrine factors. In response to ISO, IL-6 increased through the PKA-pathway in WT-CFs, while TNF-a and IL-1 β to lesser extent. We stimulated NRCMs with the culture medium of WT-CFs or IL-6KO-CFs. Importantly, the culture medium of ISO-stimulated WT-CFs induced cardiomyocyte hypertrophy, while not that of IL-6KO-CFs, suggesting that IL-6 directly or indirectly is involved in the hypertrophic response of NRCMs to ISO.

[Conclusion]

The β 2AR stimulation in CFs causes cardiac hypertrophy by producing hypertrophic factors, such as IL-6, as a paracrine mechanism. IL-6 may be a therapeutic target of cardiac hypertrophy.