3-O-108 Oral Sessions

Involvement of intracellular Fe²⁺ against oxidative stress in CRR cells

<u>Kazuo Tomita</u>^{1,2}, Yoshikazu Kuwahara^{1,3}, Kento Igarashi^{1,2}, Yuko Takashi^{1,4}, Taisuke Nagasawa¹, Sayuri Yamanishi^{1,5}, Koh-Ichi Tanaka^{1,2,6}, Jyun-Ichi Kitanaka⁶, Nobue Kitanaka⁶, Akihiro Kurimasa³, Miyawaki Shou-Ich⁵, Yoshihiro Nishitani⁴, Nobuyoshi Nishiyama⁴, Motohiko Takemura⁵, Manabu Fukumoto⁷, Tomoaki Sato¹

¹Dept. Applied Pharm., Grad. Sch. Med. & Dent. Sci., Kagoshima Univ., ²Div. Pharmacol., Dept. Pharm., Sch. Pharm., Hyogo Univ. Health Sci., ³Dept. Radiation Biol. Med., Facul. Med, Tohoku Med. Pharm. Univ., ⁴Dept. Restorative Dentistry and Endodontology, Grad. Sch. Med. & Dent. Sci., Kagoshima Univ., ⁵Dept. Orthodontics and Dentofacial Orthopedics, Grad. Sch. Med. & Dent. Sci., Kagoshima Univ., ⁶Dept. Pharmacol., Hyogo Col. Med., ⁷RIKEN, AIP

To achieve more effective cancer treatment, we have established and analyzed "clinically relevant radioresistant (CRR) cells" that can survive exposing to 2 Gy/day X-rays for more than 30 days. CRR cells show resistance against hydrogen peroxide (H_2O_2) that is one of the reactive oxygen species. However, the resistant mechanism to H_2O_2 has not been elucidated yet. Therefore, we investigated the involvement of iron ion in the resistant mechanism to H_2O_2 in CRR cells because iron ion has been reported to react with H_2O_2 and produce hydroxyl radical (\cdot OH). \cdot OH have been shown to react with plasma membrane phospholipid and lead to cell death. Internal Fe²⁺ and \cdot OH amount were decreased in CRR cells compared with its parental cells. In addition, expression of ferritin, which is iron-binding protein, was increased in CRR cells. No internal H_2O_2 uptake and lipid peroxidation were seen in CRR cells after 50 μ M H_2O_2 treatment for 2 hours, whereas internal H_2O_2 uptake and lipid peroxidation was increased after 50 μ M H_2O_2 treatment of 50 μ M H_2O_2 in CRR cells. Administration of phospholipid also led to further cell death after administration of 50 μ M H_2O_2 in CRR cells. Administration of phospholipid also led to further cell death after s0 μ M H_2O_2 treatment in CRR cells. These results suggest that intracellular Fe²⁺ content is very important against oxidative stress response in CRR cells and control of Fe²⁺ amount may be an effective option for cancer that is resistant to treatment.