The mechanism of serotonin-induced increase in intracellular Ca²⁺ and constriction via Rho kinase in rat thoracic aortas

Yuka Terada, Minami Kishimoto, Karin Torii, Katsutoshi Yayama

Labo. Cardiovasc Pharm., Faculty Pharm. Sci., Kobe Gakuin Univ.

The mechanism of serotonin (5-HT)-induced vasoconstriction and intracellular Ca^{2+} ($[Ca^{2+}]i$) mobilization is not completely elucidated. 5-HT-induced vasoconstriction partly involves Ca^{2+} -independent activation of Rho kinase. However, the mechanism of Rho kinase activation by 5-HT is still unknown. We examined the mechanism of 5-HTinduced $[Ca^{2+}]i$ mobilization of rat aortic smooth muscle cells using microscopic fluorometry. We also investigated whether 5-HT-induced constriction in rat thoracic aortas is mediated by Rho kinase activation through Src, epidermal growth factor receptor (EGFR), and extracellular signal-regulated kinase (Erk).

5-HT induced a biphasic $[Ca^{2+}]i$ response, and the initial $[Ca^{2+}]i$ increase was attenuated by inositol triphosphate (IP_3) receptor blocker, and inhibitors of Src and phosphoinositide 3-kinase (PI3K), but not L-type Ca²⁺ channel blocker (LCBB). The second $[Ca^{2+}]i$ increase was attenuated by LCBB. Contractile response to 5-HT significantly attenuated by inhibitors of Rho kinase, Erk1/2, Src, and EGFR. These data suggest that 5-HT induces Ca²⁺ release from the endoplasmic reticulum via Src and PI3K, and subsequently extracellular Ca²⁺ influx via L-type Ca²⁺ channel, and 5-HT-induced constriction is mediated by Rho kinase activation via Src, EGFR, and Erk in rat thoracic aortas.