Cardiovascular functions of renal tubule- and vascular smooth musclespecific transgenic mice expressing dominant negative TRPM7 mutant

<u>Hideaki Tagashira</u>¹, Tomo Kita¹, Takayuki Nemoto¹, Tomohiro Numata², Satomi Kita^{1,3}, Takahiro Iwamoto¹

¹Dept. Pharmacol., Fac. of Med., Fukuoka Univ., ²Dept. physiol., Fac. of Med., Fukuoka Univ., ³Dept. Pharmacol., Fac. of Pharma. Sci., Tokushima Bunri Univ.

Magnesium ion (Mg^{2+}) is an essential divalent cation and cellular Mg^{2+} concentration is tightly regulated by various Mg^{2+} channels/transporters. Therefore, dysfunction of Mg^{2+} channels/transporters may lead to a variety of cardiovascular or neuromuscular disorders. TRPM7 is a non-selective cation channel, which predominantly permeates Mg^{2+} under physiological conditions. We generated tissue-specific transgenic mouse models expressing the dominant negative TRPM7 mutant (TRPM7DN-Tg) to study the physiological and pathophysiological mechanisms of Mg^{2+} regulation. Whole-cell patch-clamp recordings revealed that TRPM6/7 currents in HEK293 cells were almost completely attenuated by co-expression of TRPM7DN mutant. Renal tubule-specific TRPM7DN-Tg exhibited dysregulation of serum Mg^{2+} level and urinary Mg^{2+} excretion. Interestingly, in these mice, phenylephrine (PE)-induced vascular contractile responses was significantly attenuated. On the other hand, vascular smooth muscle-specific TRPM7DN-Tg showed attenuation of PE-induced contractile responses without changing serum Mg^{2+} level and urinary Mg^{2+} excretion. Our tissue-specific TRPM7DN-Tg will be useful animal models for studying magnesium disorders.