2-YIA-35 YIA

The role of Prostaglandin D₂ synthase in retinal angiogenesis

<u>Sekihachi Erika</u>¹, Keisuke Omori¹, Koji Kobayashi¹, Nanae Nagata¹, Tatsuro Nakamura¹, Kaori Kurata², Akiyoshi Uemura², Takahisa Murata¹

¹Department of Animal Radiology, The University of Tokyo, ²Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences

Although prostaglandin D_2 (PGD₂) represents anti-angiogenic role in tumor model, its role in physiological and pathological angiogenesis still remain unknown. We here evaluated the role of PGD₂ on retinal angiogenesis using genetically modified mice. In postnatal 8th day retina of WT, lipocalin-type PGD synthase (L-PGDS) was expressed in endothelial cells. Gene deficiency of L-PGDS impaired the physiological angiogenesis of retina, accompanied with increased mRNA expression of pro-angiogenic factor VEGF. *In vitro* study showed that L-PGDS inhibition elevated the hypoxia-induced VEGF expression, which was inhibited by treatment of a PGD₂ metabolite 15d-PGJ₂. We next generated a pericyte deficiency-induced retinal angiogenesis model by injection of anti-PDGFR β antibody. In P8 retina of WT, the injection of antibody induces inflammation in retina, and infiltrating macrophages expressed hematopoietic PGD synthase (H-PGDS). Gene deficiency of H-PGDS or PGD receptor DP accelerated the angiogenesis. This phenomenon was accompanied with increased mRNA expression of one of the chemokines, Stromal derived factor 1 α . In isolated macrophage, hypoxia increased the expression of cytokines, wich was inhibited by adding receptor inhibitor. Taken together, L-PGDS promotes physiological angiogenesis and H-PGDS attenuate pathological angiogenesis in mouse retina.