Hypoxia increases $K_{_{2P}}5.1 \text{ K}^{_{\uparrow}}$ channel expression in CD4⁺ T cells of the mouse IBD model

<u>Kyoko Endo</u>¹, Hiroaki Kito², Ryo Tanaka¹, Junko Kajikuri², Satoshi Tanaka¹, Takayoshi Suzuki³, Susumu Ohya²

¹Dept.Pharmacol., Div. Pathol. Sci., Kyoto Pharmaceut. Univ., ²Dept. Pharmacol., Grad. Sch. Med. Sci., Nagoya City Univ., ³Dept. Compl. Mol. Chem., Inst. Sci. Indust. Res., Osaka Univ.

Several studies have shown that up-regulation of $K_{2P}5.1$ K⁺ channel in CD4⁺ T cells of patients with multiple sclerosis (MS) and rheumatoid arthritis (RA) and a mouse model of inflammatory bowel disease (IBD). However, the underlying mechanism of $K_{2P}5.1$ up-regulation in T cells remains to be elucidated. Inflammation-associated hypoxia is involved in the pathogenesis of autoimmune diseases, and T cells are exposed to hypoxic environment during recruitment from the inflamed tissues to secondary lymphoid tissues. Here we explored whether inflammation-associated hypoxia is attributable to increased expression and activity of $K_{2P}5.1$ in splenic CD4⁺ T cells of chemically-induced IBD model mice. Significant increase in hypoxia-inducible factor (HIF)-1 α transcripts and proteins was found in splenic CD4⁺ T cells of IBD model. In activated splenic CD4⁺ T cells, hypoxia (1.5% O₂) increased K_{2P}5.1 expression and activity, whereas, the treatment with the HIF α subunit inhibitor, FM19G11 decreased them. Together, these results provide the possible mechanism for K_{2P}5.1 up-regulation via HIF-1 α signal activation in CD4 ⁺ T cells of IBD model.