Analysis of oxytocin as a positive allosteric modulator (PAM) of the opioid δ -and κ -receptors.

<u>Yuki Yoshida</u>¹, Hideki Takahashi^{2,3}, Haruka Ono^{2,3}, Yoshiyuki Meguro^{2,4}, Miyano Kanako², Miki Nonaka², Shigeto Hirayama^{2,3}, Takaaki Mizuguchi³, Masaki Kobayashi¹, Ryoma Tagawa¹, Hideaki Fuji³, Yoshikazu Higami¹, Yasuhito Uezono^{2,5,6}

¹Lab. Mol. Patho & Metab., Grad. Pharmaceu., Tokyo Univ Sci., ²Div. Cancer Pathophysiol., NCCRI., ³Lab. Med. Chem., Kitasato Univ. Sch. Pharmacy., ⁴Dept. Surg., Jichi Med. Univ., Sch. Med., ⁵Div. Suppo. Care Res., EPOC, NCC., ⁶Cent. Suppo. Care., NCCH.

Oxytocin (OT), composed of nine amino acids, has a wide range of physiological functions such as uterine contractions, maternal/social behavior and anti-stress effects. Recently, it has been reported that OT released from parvocellular neurons alleviates pain. Analgesic effects of OT might be involved in the μ - and κ -opioid receptors (OR) in the rats because it was partially inhibited by the antagonists of μ - and κ -ORs but not δ -ORs. However, it has not been elucidated the mechanism in detail. While we previously reported that OT could enhance the μ -OR activity as a positive allosteric modulator (PAM), it remains unclear whether OT behaves as a PAM for the δ - and κ -OR. We therefore analyzed activities of δ - and κ -OR stimulated by OT in two types of HEK293 cells stably expressing δ - and κ -OR, respectively. For the measurement, we used the CellKeyTM assay system that measures changes of impedance following OR activation. In the assay, OT failed to exert agonistic effects on the δ - and κ -OR, whereas it enhanced the κ -OR activity induced by κ -OR agonists dynorphin A, U50488 and morphine. Interestingly, OT at 10^{-6} M had no effect on the δ -OR activity induced by δ -OR agonists Leu- and Met-enkephalin, SNC80 and morphine. We also revealed all amino acids of OT except Leu in the position 8 could be involved in PAM activity at the κ -OR. In addition, our competitive receptor-binding analysis disclosed that OT had no effect on the κ -OR orthosteric binding sites. Hence, OT could function as a κ -OR PAM in addition to a μ -OR PAM.