A neuroprotective role of aquaporin-4 against other than amyloid β deposition or neuroinflammation in the 5xFAD transgenic mice model.

<u>Yoichiro Abe</u>¹, Natsumi Ikegawa², Minetaka Murakami², Takumi Tanaka², Takako Niikura², Kyosuke Muramatsu³, Kaoru Yamada³, Tadafumo Hashimoto³, Motohito Goto⁴, Taichi Yamamoto⁴, Kenji Kawai⁴, Wakami Goda¹, Keitaro Yoshida⁵, Satoko Hattori⁶, Tsuyoshi Miyakawa⁶, Kenji Tanaka⁵, Masaru Mimura⁵, Takeshi Iwatsubo³, Jun-Ichi Hata⁴, Masato Yasui¹

¹Dept. Pharmacol., Keio Univ. Sch. Med., ²Dept. Information and Communication Sci., Sophia Univ., ³Dept. Neuropathol., Grad. Sch. Med., Univ. of Tokyo, ⁴CIEA, ⁵Dept. Neuropsychiatry, Keio. Univ. Sch. Med., ⁶Div. Syst. Med.; Sci., Inst. Comp. Med. Sci., Fujita Health Univ,

Aquaporin-4 (AQP4) is the most abundant water channel in the CNS specifically expressed in the astrocytic end-feet around blood vessels and is thought to contribute to water and ion homeostasis in the brain. AQP4 has been suggested to be involved in the pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), which may be due to the modulation of neuroinflammation or the impairment of interstitial fluid bulk flow system in the central nervous system. In this study, to investigate the implication of AQP4 in AD pathology, we crossed an AD model, 5xFAD with AQP4 knockout mice. We demonstrate that deleting AQP4 from 5xFAD resulted in acceleration of behavioral abnormality, namely an age-dependent reduction of nighttime activity, associated with aggravation of epileptiform neuronal activity as well as convulsions. Importantly, these symptoms occurred independently of accumulation of amyloid plaques or neuroinflammatory responses of glial cells, since in this model, AQP4 deficiency did not affect age-dependent increase in amyloid deposition in parenchyma or neuroinflammation. Our results provide an important perspective for developing new diagnostic methods and treatments for Alzheimer's disease.