2-P-193 Poster Sessions

Induction of reactive oxygen species by activation of the EP2 receptor contributes to prostaglandin E2-induced cytotoxicity in motor neuron-like NSC-34 cells

Hiroshi Nango, Yasuhiro Kosuge, Hiroko Miyagishi, Yoshihisa Ito, Kumiko Ishige

Lab. Pharmacol., Sch. Pharm., Nihon univ.

We have shown previously that prostaglandin E2 (PGE2) directly induces neuronal death through activation of the Eprostanoid (EP) 2 receptor in differentiated NSC-34 cells, motor neuron-like cell line. In the present study, to clarify the mechanisms underlying PGE2-induced neurotoxicity, we focused on generation of intracellular reactive oxygen species (ROS) in NSC-34 cells. Dichlorofluorescein fluorescence analysis of PGE2-treated cells showed that intracellular ROS levels increased markedly with time, and that this effect was antagonized by an EP2 antagonist, PF -04418948, but not EP3 antagonist, L-798,106. Although an EP2 agonist, butaprost, mimicked the effect of PGE2, an EP1/EP3 agonist, sulprostone, transiently but significantly decreased the intracellular ROS. MTT reduction assay and lactate dehydrogenase release assay revealed that PGE2- and butaprost-induced cell death were each suppressed by pretreatment with a cell permeable antioxidant, N-acetylcysteine (NAC). Western blot analysis revealed that the active form of caspase-3 was markedly increased in the PGE2- and butaprost-treated cells. These increases in caspase -3 protein expression were suppressed by pretreatment with NAC. Our data have demonstrated that PGE2 is an endogenous inducer of intracellular ROS, and that production of ROS induced by PGE2-EP2 receptor signaling is coupled to the caspase-3 cascade in NSC-34 cells.