Galantamine inhibits aggregation of α -synuclein in human neuroblastoma SH-SY5Y cells

Sora Nozaki, Masanori Hijioka, Masahisa Tsuji, Yoshihisa Kitamura

Lab. Phrmacology and Neurobioligy, College of Pharmaceutical Sciences, Ritsumeikan University

Synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders featured by the abnormal accumulation of α -synuclein protein (α -syn). Recent studies showed exogenous pre-formed fibrils (PFFs) of recombinant α -syn induced endogenous α -syn aggregates in human SH-SY5Y cells. In this study, we focused on nicotinic acetylcholine receptor (nAChR) as the therapeutic targets for synucleinopathies through α -syn clearance. PFFs were generated from α -syn by agitation followed by sonication. SH-SY5Y cells overexpressing α -syn gene were treated with PFFs for 24 h. After the incubation for 48 h, immunocytochemical analysis revealed the localization of α -syn. PFFs induced the aggregation of α -syn, which were detected with antiphosphorylated- α -syn antibody and thioflavin-T. These data indicated that intracellular aggregation of α -syn were Lewy body-like aggregates. In addition, we examined galantamine effect, because some reports showed nAChR signaling increased autophagic activity. Galantamine were treated for 48 h after preincubation with PFFs, and then α -syn aggregation was decreased. These observations suggest that nAChR may be a novel target for synucleinopathies through α -syn clearance by autophagic activation.