The mechanism of sleep spindles generation: New insights from a computational model and EEG data of the transgenic mice

Yamada Tetsuya

Dept. of Systems Pharmacology, Grad. Sch. of Med., The Univ. of Tokyo

Sleep spindles are distinctive EEG waves during NREM sleep, with the frequency in the range 9-15 Hz. Altought the thalamocortical (TC) system is considered as a main source of sleep spindles, several studies indicate that also cortical interneurons may play pivotal roles in generating sleep spindles.

Here, we hypothesized that a certain firing pattern in cortical interneurons is essential for sleep spindles generation, and developed a minimum computational model of an inhibitory cortical neuron with five channels and a pump, which recapitulates the firing pattern of cortical neurons during sleep spindles. Comprehensive bifurcation and detailed mathematical analyses predicted that one channel family play a role in generating the electrophysiological characteristics of sleep spindles. Then, we generated transgenic mice and analyzed sleep spindles from EEG data. As a result, a part of transgenic mice showed decreased sleep spindles episode and events. Combining these two approaches, we suggest a novel mechanism of sleep spindles generation, which may become a potential target for a treatment or a biomarker of certain diseases related to sleep spindles, like schizophrenia or absence seizure.