2-P-146 Poster Sessions

Investigation of a new type of microglia appearing in the ischemic core area

<u>Toshinori Sawano</u>¹, Natsumi Yamaguchi¹, Yousuke Inoue¹, Ryotaro Nishi², Jin Nakatani¹, Shinobu Inagaki^{3,4}, Takayuki Nakagomi⁵, Tomohiro Matsuyama⁵, Hidekazu Tanaka¹

¹Lab. Pharm., Dept. Biomed Sci., Col. Life Sci., Ritsumeikan Univ., ²Lab. Med. Cell Biol., Dept. Biomed Sci., Col. Life Sci., Ritsumeikan Univ., ³United Grad. Sch. Child Develop., Osaka Univ., ⁴Dept. PT., Yukioka Col. Health Sci., ⁵Lab. Neurogenesis and CNS Repair., Inst. Adv. Med. Sci., Hyogo Col. Med.

Brain ischemia leads to irreversible tissue necrosis and central nervous system (CNS) dysfunction. On the other hand, many studies have demonstrated that CNS shows reparative potential after brain injury. We previously reported that brain pericytes in the ischemic core area acquired multipotent stem cell activity, and termed the cells "ischemia-induced multipotent stem cells (iSCs)." iSCs can differentiate into various cells, including neurons, astrocytes, oligodendrocytes, and microglia *in vitro*. In this study, we analyzed the behavior and functions of iSCs in the ischemic cortex, using ischemic model mice. In the ischemic core area, there were some Iba1+ cells, which expressed Nestin (iSCs marker). Parabiotic analysis revealed that Iba1+ cells in the ischemic core area were not derived from peripheral blood cells. Iba1+/Nestin+ cells in the ischemic core area abundantly expressed genes that are involved in vascular development. These results suggest that iSCs differentiate into microglia in the ischemic core area, which contribute to maintenance of iSCs niches.