Fatty-acid-binding protein 3 is critical for α -Synuclein uptake and MPP⁺-induced mitochondrial dysfunction in dopaminergic neurons

Ichiro Kawahata¹, Luc Bousset², Ronald Melki², Kohji Fukunaga¹

¹Dept. Pharm., Grad. Sch. Pharm. Sci., Tohoku Univ., ²Lab. Neuro. Dis., CEA, MIRcen & CNRS

 α -Synuclein is an abundant neuronal protein that accumulates in insoluble inclusions in Parkinson's disease and other synucleinopathies. Fatty acids partially regulate α -Synuclein accumulation, and mesencephalic dopaminergic neurons highly express fatty acid-binding protein 3 (FABP3). We previously demonstrated that FABP3 knockout mice show decreased α -Synuclein oligomerization and neuronal degeneration of tyrosine hydroxylase (TH)-positive neurons *in vivo*. In this study, we newly investigated the importance of FABP3 in α -Synuclein uptake, 1-methyl-4-phenylpyridinium (MPP⁺)-induced axodendritic retraction, and mitochondrial dysfunction. To disclose the issues, we employed cultured mesencephalic neurons derived from wild type or FABP3^{-/-} C57BL6 mice and performed immunocytochemical analysis. We demonstrated that TH⁺ neurons from FABP3^{+/+} mice take up α -Synuclein monomers while FABP3^{-/-} TH⁺ neurons do not. The formation of filamentous α -Synuclein inclusions following treatment with MPP⁺ was observed only in FABP3^{+/+}, and not in FABP3^{-/-} neurons. Notably, detailed morphological analysis revealed that FABP^{-/-} neurons did not exhibit MPP⁺-induced axodendritic retraction. Moreover, FABP3 was also critical for MPP⁺-induced reduction of mitochondrial activity and the production of reactive oxygen species. These data indicate that FABP3 is critical for α -Synuclein uptake and mitochondrial functions in dopaminergic neurons, thereby preventing synucleinopathies, including Parkinson's disease.