In vivo Ca²⁺ imaging analysis of pancreatic β-cells and islets using transgenic mice expressing a high-sensitivity ratiometric Ca²⁺ indicator

Kazunori Kanemaru¹, Isamu Taiko^{1,2}, Masamitsu lino¹

¹Div. Cel. Mol. Pharm., Nihon Univ. Sch. Med., ²Dept. Physiol., Nihon Univ. Sch. Med.

Pancreatic β -cells release insulin in a Ca²⁺-dependent pulsatile manner to control blood glucose levels. Although the Ca²⁺ signaling mechanism in β -cells has been extensively studied using *in vitro* and *ex vivo* preparations, its analysis in living animals remains challenging. Therefore, while β -cell activities *in vivo* are under the influence of the autonomic nervous system, various hormones and other bioactive substances, Ca²⁺ responses of β -cells under physiological conditions have not been clarified. We here report a method to monitor and analyze *in vivo* β -cell Ca²⁺ activities using a transgenic mouse line expressing a genetically encoded ratiometric Ca²⁺ indicator, YC-Nano50. Using the method, we visualized β -cell Ca²⁺ signals in laparotomized mice under anesthesia, and observed synchronized Ca²⁺ oscillations in β -cells within individual islets. Furthermore, we succeeded in monitoring Ca²⁺ activities in multiple islets simultaneously, which may clarify the basis for a pulsatile insulin secretion. Further studies in living animals using the new method is expected to help elucidate the mechanism of insulin secretion and the etiology of diabetes.