1-YIA-26 YIA

Phosphorylation of Npas4 by MAPK regulates reward-related gene expression and behaviors

<u>Yasuhiro Funahashi</u>¹, Anthony Ariza¹, Ryosuke Emi¹, Yifan Xu¹, Shan Wei², Sachi Kozawa¹, Rijwan Uddin Ahammad¹, Mengya Wu¹, Tetsuya Takano¹, Yoshimitsu Yura¹, Keisuke Kuroda¹, Taku Nagai², Mutsuki Amano¹, Kiyofumi Yamada², Kozo Kaibuchi^{1,3}

¹Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, ²Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, ³Institute for Comprehensive Medical Science, Fujita Health University

Dopamine (DA) activates MAPK via PKA/Rap1 in medium spiny neurons (MSNs) expressing the dopamine D1 receptor (D1R)in the nucleus accumbens (NAc), thereby regulating reward-related behavior. However, howMAPKregulates reward-relatedlearning and memory through gene expression is poorly understood. Here, to identify the relevant transcriptional factors, we performed proteomic analysis using affinity beads coated with CREB-binding protein (CBP), a transcriptional coactivator involved in reward-related behavior. We identified more than 400 CBP-interacting proteins, including Neuronal Per Arnt Sim domain protein 4 (Npas4). We found that MAPK phosphorylated Npas4 downstream of PKA, increasing the Npas4-CBP interaction and the transcriptional activity of Npas4 at the brain-derived neurotrophic factor (BDNF) promoter. The deletion of Npas4 in D1R-expressing MSNs impaired cocaine-induced place preference, which was rescued by Npas4-WT but not by a phospho-deficient Npas4 mutant. These observations suggest that MAPK phosphorylates Npas4 in D1R-MSNs and increases transcriptional activity to enhance reward-related learning and memory. (Funahashi et al., Cell Reports, 2019)