Psychiatric-disorder-related behavioral phenotypes and cortical hyperactivity in a mouse model of 3q29 deletion syndrome

<u>Masayuki Baba</u>¹, Kazumasa Yokoyama², Kaoru Seiriki^{1,3}, Kensuke Matsumura^{1,3,4}, Momoka Kondo¹, Kana Yamamoto¹, Atsushi Kasai¹, Yukio Ago^{1,5}, Kazuki Nagayasu¹, Atsuko Hayata^{1,6}, Shun Yamaguchi^{7,8}, Daisuke Mori^{9,10}, Norio Ozaki⁹, Tadashi Yamamoto^{11,12}, Kazuhiro Takuma^{6,13}, Ryota Hashimoto^{14,15}, Hitoshi Hashimoto^{1,6,16,17,18}, Takanobu Nakazawa^{1,13}

¹Lab. Mol. Neuropharmacol., Grad. Sch. Pharmaceut. Sci., Osaka Univ., ²Pharmaceut. Res. Div., Takeda Pharmaceut. Co. Ltd., ³Interdiscip. Program Biomed. Sci., Inst. Transdiscip. Grad. Degree Program, Osaka Univ., ⁴JSPS, ⁵Lab. Biopharmaceutics, Grad. Sch. Pharmaceut. Sci., Osaka Univ., ⁶United Grad. Sch. Child Dev., Osaka Univ., ⁷Dept. Morphological Neurosci., Gifu Univ. Grad. Sch. Med., ⁸Ctr. Highly Adv. Integration Nano Life Sci., Gifu Univ., ⁹Dept. Psychiatry, Nagoya Univ. Grad. Sch. Med., ¹⁰Brain Mind Res. Ctr., Nagoya Univ., ¹¹Lab. Ilmmunogenetics, Ctr. Integr. Med. Sci., RIKEN, ¹²Cell Signal Unit, Okinawa Inst. Sci. Tech. Grad. Univ., ¹³Dept. Pharmacol., Grad. Sch. Dent., Osaka Univ., ¹⁴Dept. Pathol. Mental Diseases, Natl. Inst. Mental Health, Natl. Ctr. Neurology Psychiatry, ¹⁵Osaka Univ., ¹⁶Div. Biosci., Inst. Datability Sci., Osaka Univ., ¹⁷Transdimensional Life Imaging Div., Inst. Open Transdiscip. Res. Initiatives, Osaka Univ., ¹⁸Dept. Mol. Pharmaceut. Sci., Grad. Sch. Med., Osaka Univ.

The 3q29 microdeletion is a rare recurrent copy number variant (CNV) leading to an increased risk for neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder (ASD), and a >40-fold increased risk for schizophrenia. However, the neurobiological basis for 3q29 deletion syndrome is currently unknown. In order to investigate the biological changes induced by the microdeletion, we generated a mouse model of human 3q29 deletion syndrome by deleting the orthologous region. 3q29 deletion (Df/+) mice showed reduced body and brain weight. Importantly, Df/+ mice showed deficits in social interaction and prepulse inhibition, which are reminiscent of the phenotypes in patients with 3q29 deletion syndrome. By unbiasedly analyzing the whole-brain neural activity, we found that neuronal activity was abnormally activated in a restricted region of the cortex of Df/+ mice. Furthermore, we found that the expression levels of immediate early genes were increased and that the number of parvalbumin positive neurons was decreased in the cortex of Df/+ mice. Our results suggest that Df/+ mice may provide important clues for understanding the disease-causative molecular and cellular pathology of psychiatric disorders.