Symposium17

Novel defense strategy against progressive neurodegeneration by controlling intracellular Zn²⁺ dysregulation

Atsushi Takeda

Dept. Neurophysiology, Sch. Pharmaceutical Sciences, Univ. Shizuoka

The causes of progressive neurodegeneration, i.e., Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown. The basal (static) concentration of intracellular Zn^{2+} is estimated to be approximately 100 pM and is extremely lower than that of intracellular Ca^{2+} (~100 nM), suggesting that intracellular Zn^{2+} homeostasis is crucial for neural function. Moreover, the basal concentration of extracellular Zn^{2+} is estimated to be approximately 10 nM and is age-relatedly increased based on age-related increase in brain extracellular Zn. We postulated that progressive neurodegeneration is due to age-related intracellular Zn^{2+} dysregulation, which is induced by rapid influx of extracellular Zn^{2+} . Neuronal amyloid β_{1-42} (A β_{1-42}) accumulation is considered an upstream event in the AD pathogenesis. Here we report that Zn-A β_{1-42} oligomers formed in the extracellular compartment are synaptic activityindependently taken up into neurons, followed by rapid intracellular Zn²⁺ dysregulation. PD is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. Here, we report a unique mechanism of nigral dopaminergic degeneration, in which rapid intracellular Zn²⁺ dysregulation via the production of reactive oxygen species, especially hydrogen peroxide causes PD in rats, which is induced by paraquart and 6hydroxydopamine. I will talk about novel defense strategy against progressive neurodegeneration by controlling intracellular Zn²⁺ dysregulation.