Symposium7

Regulation of calcium signal pathway in fear-related memory

Shigeki Moriguchi¹, Satomi Kita², Takahiro Iwamoto³, Kohl Fukunaga¹

¹Dept. Pharmacol., Grad. Sch. Pharmaceut. Sci., Tohoku Univ., ²Dept. Pharmacol., Fac. Pharmaceut. Sci., Tokushima Bunri Univ., ³Dept. Pharmacol., Fac. Med. Fukuoka Univ.

Na⁺/Ca²⁺exchangers (NCXs) are mainly expressed in the plasma membrane and exchange one Ca²⁺for three Na⁺, depending on the electrochemical gradients across the plasma membrane. NCXs have three isoforms, NCX1–3, encoded by distinct genes in mammals. Here, we report that heterozygous mice lacking NCX1 (NCX1^{+/-}) exhibit impaired amygdala-dependent cued fear memory. NCX1^{+/-}mice showed significant impairment in fear-related behaviors measured with the elevated-plus maze, light-dark, open-field, and marble-burying tasks. In addition, NCX1 ^{+/-}mice showed abnormality in cued fear memory but not in contextual fear memory in a fear-conditioning task. In immunohistochemical analyses, NCX1^{+/-}mice had significantly increased number of c-Fos positive cells in the lateral amygdala (LA) but not in the central amygdala following fear-related tone stimuli. c-Fos expression peaked at 1 h. In concordance with the aberrant fear-related behaviors in NCX1^{+/-}mice, enhanced long-term potentiation was also observed in the LA of these mice. Furthermore, enhancement of CaMKII or CaMKIV activity in the LA was observed in NCX1^{+/-}mice by immunoblot analyses. In contrast, CaMKII^{+/-}but not CaMKIV activity in the LA. Altogether, the increased CaMKII activity and consequent c-Fos expression likely account for the dysregulation of amygdala-dependent cued fear memory in NCX1^{+/-}mice.