Symposium1

Chemico-genetic discovery of molecules underlying tripartite-synaptic function in vivo

Tetsuya Takano

Department of Cell Biology, Duke University Medical School

Neuronal synapses are intimately ensheathed by abundant astroctytic perisynaptic processes, which is critical for synapse formation and function. In contrast to well-studied neuronal synaptic compartments, however, the molecular mechanisms of how astrocytic perisynaptic structures govern neuronal synapses remain ill-defined. Here, we develop a new in vivo chemico-genetic approach, Split-TurboID-GRAPHIC, that uses a cell surface fragment complementation strategy combined with informatics to identify the molecules at astrocyte-synapse junctions in vivo. We identify more than 100 proteins enriched at astrocyte-neuronal junctions. We find novel adhesion molecules highly expressed in cortical astrocytes whose deletion dramatically alters excitatory/inhibitory synaptic balance and also impairs spatial learning. Using Split-TurboID-GRAPHIC we thus establish a new mechanism by which astrocytes coordinate inhibitory synaptic balance with excitation via a chemo-affinity code of the tripartite synapse.