Imaging of extracellular Ca²⁺ in the hippocampus by a novel CMOS ion image sensor

<u>Bijay Parajuli</u>¹, Hideo Doi², Eiji Shigetomi¹, Youichi Shinozaki¹, Youna Lee², Toshihiko Noda², Kazuhiro Takahashi², Kazuaki Sawada², Schuichi Koizumi¹

¹Dept. Neuropharmacol., Interdisciplinary Grad. Sch. Med., Univ. Yamanashi, ²Dept. Electrical and Electronic Information Tech., TUT

Intracellular calcium ion (Ca^{2+i}) is one of the most important cation that controls several cellular functions, and thus there were already huge number of literature about Ca^{2+i} imaging in various cells. Although it is believed that Ca^{2+i} increase is accompanied by extracellular $Ca^{2+}(Ca^{2+o})$ decrease, the kinetics of Ca^{2+} decrease remain unknown because of the limited imaging options. To overcome this limitation, we developed a Ca^{2+} image sensor (CIS) that is highly selective to Ca^{2+} but not to other cations within wide dynamic range (from 100 mM to 100 mM). We used CIS for the imaging of Ca^{2+} o in acute hippocampal slices. Stimulation with glutamate (Glu) decreased Ca^{2+} o to around 200 nM within 3 s, which returned to the baseline level (2 mM) with slow kinetics (5 min). Glu stimulates both neurons and glial cells to evoke Ca^{2+} i elevation, thereby reducing Ca^{2+} o decrease. Interestingly, Ca^{2+} o decrease was initiated at hippocampal CA1-2, before spreading along the pyramidal layers. Glutamate- and NMDA-evoked Ca^{2+} o decreases were inhibited by a NMDA receptor antagonist D-APV, suggesting involvement of neuronal NMDA receptors in decrease in Ca^{2+} o. So far, many scientists neglected Ca^{2+} o, but the CIS would tell us its importance for understanding brain functions.