Highly neurotoxic amyloid-bassemblies from Alzheimer's disease brain, amylospheroids, inhibit endothelial Na⁺, K⁺-ATPase α3 activity, resulting in the inhibition of eNOS activity in human brain microvascular endothelial cells.

Tomoya Sasahara^{1,2}, Kaori Satomura^{1,2}, Mari Tada³, Akiyoshi Kakita³, Minako Hoshi^{1,4}

¹Center for Brain Neurodegene. Res., IBRI, FBRI at Kobe, ²Res.&Develop. Division, Kobe Lab., TAO Health Life Pharm., ³Dept. Pathol., Brain Res. Institute, Niigata Univ., ⁴Dept. Anatomy and Developmental Bio., Grad. Sch. Med., Kyoto Univ.

Vascular deposition of amyloid-bprotein (A β), known as cerebrovascular amyloid angiopathy (CAA), is associated with vascular dysfunction. In the previous meeting (WCP2018), we reported amylospheroids (ASPD, 30-mers highly neurotoxic A β assemblies in average isolated from Alzheimer's disease brain) suppressed the vasorelaxation via endothelial eNOS inactivation through mitochondrial ROS/PKC pathway. Neuronal toxicity of ASPD was reported to be exerted by impairing the activity of Na⁺, K⁺-ATPase α 3 (NAK α 3) via the direct binding (Ohnishi et al. *PNAS*2015). Here, we sought to elucidate whether NAK α 3 was involved with the eNOS inactivation by ASPD. We first detected and found the protein and mRNA of NAK α 3 in cerebrovascular endothelial cells. Furthermore, we found NAK α 3 was expressed in innermost endothelial layer of vascular vessels. We then examined whether the eNOS inactivation by ASPD was abolished by siRNA transfection. Remarkably the knockdown of ASPD-binding target NAK α 3 by ATP1A3-siRNA transfection blocked the eNOS inactivation by ASPD. Taken together, these results suggest the endothelial toxicity of ASPD was mediated by NAK α 3.